Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Energy Dissipation and Recovery of Vehicle Shock Absorbers

2012-09-24
2012-01-2037
This paper presented a brief derivation of the energy dissipation by vehicle shock absorbers. Analysis between energy dissipation and damping coefficient, the road displacement power spectral density, the vehicle speed and the tire stiffness was carried out. Then an energy recovery scheme was put forward, and the bench test proved that the energy harvest scheme is feasible. In the end, this paper provided detailed derivation of the characteristics of the hydraulic electromagnetic energy-regenerative shock absorber, which increases its feasibility and practicability.
Technical Paper

The Shock Absorber of Energy Recovery Using Electrorheological Fluid

2012-04-16
2012-01-0981
When vehicle traveling on the bumpy road or vehicle acceleration and deceleration, which will cause the body vibration of vehicle, at the same time, a large part of energy would be absorbed by the shock absorber transforms the mechanical energy into heat energy dissipated. In order to recycle the energy of vibration and keep the stability of running car, this paper provides the shock absorber of energy recovery that recycling the energy dissipated from the traditional absorber. The shock absorber includes rod and rodless chamber cavity, the two parts contain oil outlet and oil inlet, which connected to a bridge type loop of hydraulic to make pulsating oil pressure towards one direction, when the shock absorber vibration causes pulsating oil pressure, it drives hydraulic pump operation. Because the output shaft of the hydraulic pump fixedly attached to the input shaft of generator, so the generator produces electricity for recycling energy[1].
Technical Paper

Co-simulation Based Hydraulic Retarder Braking Control System

2009-10-06
2009-01-2907
Hydraulic retarder has been widely applied on military vehicles and heavy commercial vehicles because of it could provide great brake torque and has lasting working time [1]. In order to reduce driver's frequent actions in braking process and prevent hydraulic retarder system from overheating, it is need to apply constant braking torque control, this control target has a strict requirement to hydraulic control system design. Many parameters often require repeated test to determine, which increases the R&D cost and extends the research cycle. This paper tries to find a time-efficient research method of hydraulic retarder control system through studying on a heavy military vehicle hydraulic retarder system. Hydraulic retarder model is set up through test data. The hydraulic control system is built based on AMESim. Controller model is set up based on PID control. The whole vehicle brake model is built based on MATLAB/Simulink.
Technical Paper

Complex Mode Analysis on Disc Brake Squeal and Design Improvement

2009-05-19
2009-01-2101
Squeal noise in vehicle disc brakes is perceived by comsumers as both annoying and warranty cost. The mechanism is considered a mode coupling phenomenon also referred to as coalescence. In this paper, the system eigenvalues have been computed using a technique based on the • nite element method in order to obtain the dynamical properties of the disc brake assembly. The simulated squeal results were compared with the brake noise test that was in accordance with SAE J2521 standard and showed good correlation for some squeal frequencies which indicated that the research on disc brake squeal using complex mode could predict squeal propensity of the disc brake. Among the methods that have been used to control squeal noise, increasing the system damping has been shown to be very effective. The most commonly used method to increase system damping consists of attaching multi-layer laminates on the back of the brake pads.
Technical Paper

Fuzzy Control of Semi-active Air Suspension for Cab Based on Genetic Algorithms

2008-10-07
2008-01-2681
Semi-active suspension has been widely applied in commercial vehicle suspension in order to get good riding comfortableness. Fuzzy logic control (FLC) has been widely applied in the field of kinetic control because control rule of FLC is easy to understand. But the gain of fuzzy rules and adjustment of membership functions usually depend on experts' experiences and repeated experiments, thus the fuzzy rules and membership functions has strong subjectivity, also are easily affected by environment of experiments, so the main problem of fuzzy logic controller design is selection and optimization of fuzzy rules and membership functions. Genetic Algorithms (GA) is the algorithm that searches the optimal solution through simulating natural evolutionary process and is one of the evolution algorithms which have most extensive impact.
Technical Paper

Avoiding Accelerating Incorrectly While Steering with CAN Networks

2004-03-08
2004-01-0200
People, vehicles and circumstances are the three key factors, which affect transportation systems. Offering more information to the driver and helping him observe on all sides so that he can make decisions correctly are of great importance for reducing accidents. According to the present traffic regulations, in this paper we focus on the rules and process used during steering and proposed to implement them in a car information central control system based on CAN. A comparison of the brake time between brake by driver and by radars revealed the great interest of using ECUs connected by CAN network.
X